

Map, Model, Measure: Al for Biomolecules

Romain Lacombe | Stanford AI+Biomedicine May 2025

Romain Lacombe <rlacombe@stanford.edu> Stanford Chemical Engineering

About me

- Physics/Math undergrad (France) and Engineering Systems MS (MIT)
- Climate tech founder: **Plume Labs**, powers 1 in 4 smartphones globally
- Acquired by AccuWeather, lead AI for weather and climate team
- Stanford ChemE: MS (HCP)

• Al for Science: climate, materials, and biomolecular engineering

Plume Labs: Street-level air quality map Flow 1 air quality sensor

More on my work: romainlacombe.com

Al for Biomolecules: 3 papers

Map:

Can we predict properties of molecules from science papers? Can we accelerate generation of molecule conformations?

Romain Lacombe | Stanford AI+Biomedicine May 2025

Model:

Measure:

How good are protein models out of their evolutionary domain?

Map, Model, Measure: Al for Biomolecules

- Contrastive Learning **GNNS LMS** evaluation ICML 2023 Computational Biology ACS Fall 2023 AI for Organic Chemistry Workshop
- Distillation of Equivariant Latent Diffusion Models GNNs diffusion models ICLR 2024 – Generative and Experimental Perspectives for Biomolecular Design
- Experimental Design for AI in Science 2025 protein models

Extracting Molecular Properties from Natural language with Multimodal

Accelerating the Generation of Molecular Conformations with Progressive

Non-Canonical Crosslinks Confound Evolutionary Protein Structure Models

evaluation

Map, Model, Measure: AI for Biomolecules >>

Extracting Molecular Properties from Natural Language with Multimodal Contrastive Learning

<u>Romain Lacombe</u>, Andrew Gaut, Jeff He, David Lüdeke, Kateryna Pistunova **ICML 2023** Computational Biology Workshop ACS Fall 2023 AI for Organic Chemistry Workshop

[arXiv 2307.12996] GNNs LMs evaluation

Can Al learn chemistry from science papers?

Extracting molecular properties from text? Treasure trove of collective knowledge now accessible.

...

Extracting Molecular Properties from Natural Language with Multimodal Contrastive Learning

Romain Lacombe¹ Andrew Gaut¹ Jeff He¹ David Lüdeke¹ Kateryna Pistunova¹

[arXiv 2307.12996]

Romain Lacombe | Stanford AI+Biomedicine May 2025

Abstract

Deep learning in computational biochemistry has traditionally focused on melecular graphs neu-

ices in

entific

se two

prop-

latural

y prop-

ig con-

esenta-

ptions

neural

ext re-

molec-

by or-

ed per-

operty

% AU-

graph

Abstract

Deep learning in computational biochemistry has traditionally focused on molecular graphs neu-

Abstract

Deep learning in computational biochemistry has traditionally focused on molecular granhs neu-

Abstract

Deep learning in computational biochemistry has traditionally focused on molecular graphs neural representations; however, recent advances in language models highlight how much scientific knowledge is encoded in text. To bridge these two modalities, we investigate how molecular property information can be transferred from natural language to graph representations. We study property prediction performance gains after using contrastive learning to align neural graph representations with representations of textual descriptions of their characteristics. We implement neural relevance scoring strategies to improve text retrieval, introduce a novel chemically-valid molecular graph augmentation strategy inspired by organic reactions, and demonstrate improved performance on downstream *MoleculeNet* property classification tasks. We achieve a +4.26% AU-ROC gain versus models pre-trained on the graph modality alone, and a +1.54% gain compared to the recently proposed molecular graph/text contrastively trained MoMu model (Su et al., 2022).

nces in ices in entific se two ng conpropesentalatural iptions y propig conesentaptions neural ext remolecby ored peroperty % AU-2022). graph red to ct con-2022).

ientific ese two r propnatural ly prop-

neural text remolec-1 by orred perroperty % AUe graph ared to xt con-

ired to tt con-

2022).

Contrastive learning Self-supervised learning of molecule representations.

- Tasks in ML for chemistry require **deep molecular graph representations**
- GNNs can be trained to learn effective representations through contrastive learning:

Multimodal contrastive learning Align graph and text representations in latent space.

Molecular Graphs

Romain Lacombe | Stanford AI+Biomedicine May 2025

Latent Space

Natural Language

Joint dataset of molecules and papers PubChem molecules and PubMed papers

Romain Lacombe | Stanford AI+Biomedicine May 2025

Su et al. 2022: https://arxiv.org/abs/2209.05481

Aligning graph and text representations Using multimodal contrastive learning.

Liu et al. 2022: <u>https://arxiv.org/abs/2212.10789</u>

Could we generate molecules from text?

Text prompt `make me coffee'

Romain Lacombe | Stanford AI+Biomedicine May 2025

Molecular graph Caffeine 🗢

Answer: yes! But not very well.

Prompt

Generation

"This molecule has a hydroxyl group and a carbonyl group"

Has hydroxyl, but no carbonyl group (furan cycle)

Romain Lacombe | Stanford AI+Biomedicine May 2025

"This molecule is hazardous for health"

1-Hydroperoxybut-2-ene: unstable and explosive (!!)

How can we improve performance?

How can we measure improvements?

Experiment: evaluation MoleculeNet benchmark.

Evaluate graph representations on property prediction tasks (MoleculeNet)

- **BACE:** inhibitors of a human enzyme involved in Alzheimer.
- **BBBP:** blood-brain barrier penetration by small molecules.
- **Clintox:** classification of drugs approved/rejected by the FDA for toxicity.

- **MUV**: virtual molecule screening built on PubChem.
- SIDER: adverse side reactions of marketed drugs.
- Tox21: classification of toxicity measured by biological reactions and stress response.
- ToxCast: 600 tasks linked to *in vitro* toxicology data.

Evaluation on Encoder downstream tasks $f_G: \mathscr{G} \to \mathbf{Z}_{\mathscr{G}} \quad MLP(\,\cdot\,) \circ f_G: \mathscr{G} \to \hat{\mathbf{y}}_{\mathscr{G}}$

MoleculeNet

Wu et al. 2017: <u>https://arxiv.org/abs/1703.00564</u> Su et al. 2022: https://arxiv.org/abs/2209.05481 Liu et al. 2022: <u>https://arxiv.org/abs/2212.10789</u>

Results

	Experiment	BACE	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV
Graph only	Graph only pre-training	70	65.8	74	63.4	57.3	58	71.8
Graph +natural language	Baseline (<i>MoMu</i>) Baseline (pruned) Baseline (relevant)	70.31 ±3.67 71.14 ±1.93 72.13 ±0.47	68.04 ±1.67 67.86 ±2.1 68.73 ±2.21	74.6 ±0.68 74.77 ±0.37 74.85 ±0.3	63.27 ±0.53 62.71 ±1.3 62.47 ±0.66	59.39 ±0.51 59.31 ±0.72 60.05 ±0.7	61.09 ±1.1 61.17 ±1.39 59.99 ±1.73	75.66 ±0.55 75.18 ±1.06 74.47 ±0.95

Graph only: GraphCL self-supervised

MoMu: GraphCL & SciBERT (Su et al. 2022) **Pruned:** shorter paragraph (control for noise) **Relevant:** only paragraphs with name of molecule + top 20 synonyms

Can we better select text paragraphs?

Improve text retrieval with LMs Better sampling should extract better information.

Liu et al. 2022: <u>https://arxiv.org/abs/2212.10789</u>

Neural retrieval to improve semantic relevance Epsilon sampling (Hewitt et al.) for top cosine similarity sentences.

Query for cosine similarity:

- Mean: cosine similarity with mean of CLS tokens for the top 20 synonyms
- **Max:** max cosine sim with any ulletof top 20 synonyms CLS token
- Sentence: cosine sim with CLS token of a query in natural language:

"Molecular, chemical, electrochemical, physical, quantum mechanical, biochemical, biological, medical and physiological properties, characteristics, and applications of {NAME}, a compound also known as $\{SYNONYM_1\}, \ldots, \{SYNONYM_i\},$..., or $\{SYNONYM_N\}$."

Hewitt et al. 2022: <u>https://arxiv.org/abs/2210.15191</u>

Results: neural retrieval improves performance

	Experiment	BACE	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV
Graph only	Graph only pre-training	70	65.8	74	63.4	57.3	58	71.8
Graph +natural language	Baseline (<i>MoMu</i>) Baseline (pruned) Baseline (relevant)	70.31 ±3.67 71.14 ±1.93 72.13 ±0.47	68.04 ±1.67 67.86 ±2.1 68.73 ±2.21	74.6 ±0.68 74.77 ±0.37 74.85 ±0.3	63.27 ±0.53 62.71 ±1.3 62.47 ±0.66	59.39 ±0.51 59.31 ±0.72 60.05 ±0.7	61.09 ±1.1 61.17 ±1.39 59.99 ±1.73	75.66 ±0.55 75.18 ±1.06 74.47 ±0.95
Improved retrieval	Mean cosine similarity (best) Max cosine similarity (best) Sentence cosine similarity (best)	72.6 ±2.77 72.71 ±0.59 72.05 ±0.52	68.48 ±1.68 68.27 ±2.35 68.11 ±2.5	74.54 ±0.7 74.77 ±0.45 74.94 ±0.79	63.37 ±0.72 63.73 ±0.59 63.6 ±0.29	60.07 ±0.41 60.14 ±1.05 59.84 ±0.24	61.36 ±3.36 62.28 ±1.61 61.47 ±2	75.07 \pm 1.13 75.15 \pm 1.07 74.61 \pm 0.27

Table 1. Results of our experiments: AUROC classifier task performance for multiple random seeds for each *MoleculeNet* dataset, reported for each pre-training experiment and baseline model/dataset.

Better inductive bias for chemistry?

Improve graph augmentations More principled augmentations should learn better representations.

Liu et al. 2022: <u>https://arxiv.org/abs/2212.10789</u>

Baseline: random graph augmentations Baseline for molecular representations learning

• GraphCL (You et al. 2020) contrastive pre-training uses random node dropping and random subgraphs:

Data augmentation Type		Underlying Prior				
Node dropping	Nodes, edges	Vertex missing does not alter semantics.				
Edge perturbation	Edges	Semantic robustness against connectivity variations.				
Attribute masking	Nodes	Semantic robustness against losing partial attributes.				
Subgraph	Nodes, edges	Local structure can hint the full semantics.				

Table 1: Overview of data augmentations for graphs.

GraphCL GIN reached SOTA for unsupervised learning

No guarantee that augmented graphs are valid molecules!

You et al. 2020: <u>https://arxiv.org/abs/2010.13902</u>

Random graph augmentations are suboptimal Small changes lead to large differences in chemical space.

• Ex: random subgraph.

Random graph augmentations are suboptimal Small changes lead to large differences in chemical space.

• Ex: drop random atom.

Random graph augmentations are suboptimal Small changes lead to large differences in chemical space.

• Ex: drop random atom.

Idea: use chemical reactions! Nature already provides principled graph augmentations.

Idea: use addition/elimination organic reactions! Transform initial molecular graph into better behaved augmentations through valid chemical reactions!

Initial molecule

Idea: use chemical reactions! Nature already provides principled graph augmentations.

• Ex: methylation/de-methylation. $R-H + CH_4 \implies R-CH_3 + H_2$

Valid + close to original molecule

Idea: use chemical reactions! Nature already provides principled graph augmentations.

• Ex: amination/de-amination.

 $\mathrm{R-H} + \mathrm{NH}_3 \Longrightarrow \mathrm{R-NH}_2 + \mathrm{H}_2$

Valid + close to original molecule

Final results

	Experiment	BACE	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV
Graph only	Graph only pre-training	70	65.8	74	63.4	57.3	58	71.8
Graph +natural language	Baseline (<i>MoMu</i>) Baseline (pruned) Baseline (relevant)	70.31 ±3.67 71.14 ±1.93 72.13 ±0.47	68.04 ±1.67 67.86 ±2.1 68.73 ±2.21	74.6 ±0.68 74.77 ±0.37 74.85 ±0.3	63.27 ±0.53 62.71 ±1.3 62.47 ±0.66	59.39 ±0.51 59.31 ±0.72 60.05 ±0.7	61.09 ±1.1 61.17 ±1.39 59.99 ±1.73	75.66 ±0.55 75.18 ±1.06 74.47 ±0.95
Improved retrieval Better graph	Mean cosine similarity (best) Max cosine similarity (best) Sentence cosine similarity (best) Principled graph augmentation	72.6 ±2.77 72.71 ±0.59 72.05 ±0.52 71.45 ±2.24	68.48 ±1.68 68.27 ±2.35 68.11 ±2.5 69.23 ±0.93	74.54 ±0.7 74.77 ±0.45 74.94 ±0.79 74.31 ±0.36	63.37 ±0.72 63.73 ±0.59 63.6 ±0.29 62.61 ±0.49	60.07 ±0.41 60.14 ±1.05 59.84 ±0.24 61.33 ±0.69	61.36 ±3.36 62.28 ±1.61 61.47 ±2 58.97 ±2.22	75.07 \pm 1.13 75.15 \pm 1.07 74.61 \pm 0.27 75.03 \pm 1.52

Table 1. Results of our experiments: AUROC classifier task performance for multiple random seeds for each *MoleculeNet* dataset, reported for each pre-training experiment and baseline model/dataset.

augmentations

Take aways Conclusions and future work

• Improved retrieval helps extract information from natural language.

- AUROC performance metric for molecular property prediction improves by an average of +4.26% across MoleculeNet classification tasks
- Principled graph augmentations inspired from chemistry improve inductive bias for molecular representation learning
 - What other inductive biases from nature can we capture?

Map, Model, Measure: AI for Biomolecules >>

Questions?

Extracting Molecular Properties from Natural Language with Multimodal Contrastive Learning

ICML 2023 Computational Biology Workshop | ACS Fall 2023 AI for Organic Chemistry Workshop

[arXiv 2307.12996] GNNs LMs evaluation

Stanford

Map, Model, Measure: AI for Biomolecules >>

Accelerating the Generation of **Molecular Conformations with Progressive Distillation of Equivariant Latent Diffusion Models**

Romain Lacombe, Neal Vaidya **ICLR 2024** Generative & Experimental Perspectives for Biomolecular Design

[arXiv 2404.13491v1]

GNNs

diffusion models

"Molecular structures are fake news" —Aviv Korman, Dror Lab We should be thinking of structures as distributions.

We should predict structure distributions But still out of reach today.

SOTA models are trained on PDB structures from crystallography or cryo-EM

PDB structure ground truth

Jumper et al. (2022)

Romain Lacombe | Stanford AI+Biomedicine May 2025

MD is slow, expensive, and may not sample all conformation space

Can we accelerate generation today? Necessary step towards MC distribution sampling.

AlphaFold 2, V100 GPU, single structure (no ensembling):

- 0.6 min for a 256-residue chain
- 1.1 min for a 384-residue chain
- 2.1 h for a 2,500-residue chain

Jumper et al. (2022)

Setup: molecular generation with GeoLDM Geometrically equivariant latent diffusion model.

Xu et al. (2023): Geometric Latent Diffusion Models for 3D Molecule Generation

Idea: progressive distillations of the denoising process

Structure models rely on evolution and the PDB AlphaFold 3

Romain Lacombe | Stanford AI+Biomedicine May 2025

Experiments

Training set QM9 dataset of 3D molecular structures

- ~134 K molecules: Small organic compounds of up to 9 heavy atoms (C, N, O, F) with valence hydrogens
- **3D geometries:** equilibrium structures
- Gold-standard benchmark: Widely used for training and evaluating DFT and QC ML models

Ramakrishnan et al. (2014) Quantum chemistry structures and properties of 134 kilo molecules.

Experiment: baseline vs progressive distillation Train over larger steps directly vs progressively

Steps size:

- GeoLDM (baseline): 1000 denoising steps per generation
- Larger steps: train on 100 steps per generation directly
- **Distill**: train to take 2x larger steps recursively

Experiment: DDIM vs DDPM Stochastic vs implicit deterministic denoising solver

Solvers:

- DDPM: stochastic denoising steps $x_{t-1} = \frac{1}{\sqrt{1-\beta_t}} \left(x_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \right)$
- **DDIM:** deterministic implicit denoising formula

Ho et al. (2020): DDPM. Song et al. (2021): DDIM.

Romain Lacombe | Stanford AI+Biomedicine May 2025

$${=\over ar{ar{\lambda}}_t} \epsilon_ heta(x_t,t) \Big) + \sigma_t z, \quad z \sim \mathcal{N}(0,I)$$

 $x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \Big(\frac{x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(x_t, t)}{\sqrt{\bar{\alpha}_t}} \Big) + \sqrt{1 - \bar{\alpha}_{t-1}} \epsilon_\theta(x_t, t)$

Results

Progressive distillation maintains quality 8× speed-up and only a 1 point drop in molecular stability.

	Model	Sampling Method	Steps	Speed (sec^{-1})	Mol Sta %	Valid %	Valid & Unique %
Baseline	GeoLDM	DDPM	1000 100	3.70 33.30	89.4 55.8	93.8 70.6	92.7 79.7
	GeoLDM	DDIM	1000 125 16	3.59 28.30 196.69	76.3 74.6 31.4	87 85.3 53.0	86.1 84.1 52.7
Progressive distillation	GeoLDM-PD	DDPM	125 16	28.28 196.51	88.4 51.0	93.3 73.2	91.6 72.3
	GeoLDM-PD	DDIM	125 16	28.28 196.51	81.6 50.4	91.7 73.4	83.6 72.6

Quality maintained after 3-4 distillation steps DDPM-PD @ 125 steps speeds up 8x with equivalent stability.

Significant speed gains before quality loss But quality drops off after 4 steps of progressive distillation.

Distillation Steps

Examples of generated molecules Stable conformations aligned with QM9 distribution

Romain Lacombe | Stanford AI+Biomedicine May 2025

Sample stable conformations 3 distillations | 125 steps | 8x speed-up

Examples of generated molecules Unstable conformations outside the QM9 distribution

Romain Lacombe | Stanford AI+Biomedicine May 2025

Sample unstable conformations 6 distillations | 16 steps | 64x speed-up

Take aways **Conclusions and future work**

- while maintaining conformation quality.
 - 8x speed-up gains with comparable quality for DDPM-PD
- Future work: What applications does this speed-up open?
 - Scale up high-throughput screening
 - Large or multi-domain proteins: progressive distillation of AlphaFold3/Boltz-1?
 - Other ways to speed up inference? e.g. consistency models (one-step generation)

Progressive distillation leads to significant gains in generation speed

Map, Model, Measure: AI for Biomolecules >>

Questions?

Accelerating the Generation of Molecular Conformations with Progressive Distillation of Equivariant Latent Diffusion Models

ICLR 2024 Generative and Experimental Perspectives for Biomolecular Design

[arXiv 2404.13491v1]

diffusion models

GNNs

Map, Model, Measure: AI for Biomolecules >>

Non-Canonical Crosslinks Confound Evolutionary Protein Structure Models

Romain Lacombe Experimental Design in AI for Science workshop, 2025

[bioRxiv: 2025.03.17.643596v1] protein models

evaluation

Structure predictors rely on evolutionary and structural data.

Structure models rely on evolution and the PDB AlphaFold 3

Structure models rely on evolution and the PDB **ESMFold**

PDB structure ground truth

→ Meta AI

How do structure predictors perform out-of-domain?

How do they perform out-of-domain? Problem: lack of structural ground truth.

UniPROT

246,000,000 sequences

Romain Lacombe | Stanford AI+Biomedicine May 2025

Most sequences with low sequence similarity lack known crystallographic structures

Idea: crosslink geometries as ground truth for predictions!

Enter sactipeptides Rare class of proteins with sulfur-to- α -carbon crosslinks

Romain Lacombe | Stanford AI+Biomedicine May 2025

Strong geometric constraint: S-to-a-carbon bonds have a

known length of 1.82 Å

Natural experiment 10 peptides with known crosslinks, only 5 in the PDB

	Sactipeptide	Length	PDB II
	Ruminococcin C1	44	6T33
Known	Subtilosin A	35	1PXQ
	Thurincin H	31	2LBZ
structure	Thuricin CD α	30	2L9X
	Thuricin CD β	30	2LA0
	Huazacin	40	
	Hyicin 4244	35	
Unknown	Skf A	26	
structure	Streptosactin	14	
	QmpA	13	

Cross-links

Geometric ground truth

Benchmarking structure predictors How closely do predicted structures fit crosslink geometry?

Ground truth: S-to-α-carbon bonds of **known length: 1.82 Å**

Romain Lacombe | Stanford AI+Biomedicine May 2025

Benchmark: predicted distance of each S atom to bound a-carbon

Evaluation metrics Adapting structure prediction metrics to crosslinks geometry.

Global Distance Test – Total Score:

$$\text{GDT-TS} = \frac{1}{4} \sum_{D \in \{1,2,4,8\}} \%\{s\}$$

Root Mean Square Distance:

$$\text{RMSD} = \sqrt{\sum_{\text{S, C} \in \text{sactibonds}} ||d(\text{S}, \text{C}_{\alpha}^{\text{target}}) - 1.8 \text{ Å}||^2}$$

Romain Lacombe | Stanford AI+Biomedicine May 2025

sactibond $| d(S, C_{\alpha}^{\text{target}}) \leq D + 1.8 \text{ Å} \}$

Results: benchmarking 6 SOTA structure prediction models

Results Structure predictors generalize poorly beyond evolutionary priors.

Benchmarking 6 SOTA models:

Model	Authors	Ensembling	GDT-TS		RMSD	
			Known	Unknown	Known	Unknown
AlphaFold 2	DeepMind	Yes	17.1 %	7.5 %	10.7 Å	12.7 Å
AlphaFold 3	DeepMind	Yes	13.3 %	11.7 %	16.9 Å	12.0 Å
Boltz-1	MIT	No	13.7 %	19.2 %	9.7 Å	6.9 Å
ESMFold	Meta	No	0.0 %	10.0 %	17.8 Å	12.3 Å
OmegaFold	Tencent AI	No	7.9 %	9.2 %	9.2 Å	9.1 Å
RoseTTAFold 2	Baker Lab	Yes	16.7 %	18.3 %	8.1 Å	7.9 Å
Average	_		11.45 %	12.65 %	12.1 Å	10.1 Å

(+) Higher == better (-) Lower == better

Results Structure predictors generalize poorly beyond evolutionary priors.

Global Distance Test – Total Score:

Root Mean Square Distance:

Take aways **Conclusions and future work**

- Structure predictors generalize poorly beyond evolutionary priors.
- This limits their usefulness for mutational screening, de novo design, etc.
- Can we train on more low evolutionary depth examples?
 - More non-canonical crosslinks? Macrocycles? Limited by PDB data
- Can we inject physics into protein structure predictors?
 - Free energy in loss?
 - Blend MD and denoising steps?

Map, Model, Measure: AI for Biomolecules >>

Questions? **Non-Canonical Crosslinks Confound Evolutionary Protein Structure Models**

Experimental Design in AI for Science, 2025

[bioRxiv: 2025.03.17.643596v1] protein models

evaluation

Al for Biomolecules: 3 papers

Map:

Can we extract properties of molecules from science papers? Can we accelerate sampling of molecule conformations?

Romain Lacombe | Stanford AI+Biomedicine May 2025

Model:

Measure:

How good are protein models out of their evolutionary domain?

Thank you!

Co-authors:

Romain Lacombe Stanford ChemE

Andrew Gaut Stanford CS

Jeff He Stanford CS

David Lüdeke Stanford CS

Kateryna Pistunova Stanford Physics

Neil Vaidya NVIDIA

Support:

Chris Manning Stanford CS

Stefano Ermon Stanford CS

Will Van Treuren Interface Biosciences

Romain Lacombe | Stanford AI+Biomedicine May 2025

ICML

Chemistry for Life[®]

E CLIR 2024

ACS

CIFAR

ICLR

MoMu Anyi Rao et al.

NVIDIA GPU Cluster (GeoLDM distillation)

ICML 2023 Computational Biology Workshop

ACS Fall 2023 AI in Organic Chemistry Workshop

ICLR 2024 Generative and experimental approaches to biomolecular design workshop

Experimental Design: Al for Science Workshop 2025

Interface Bio (sactipeptides expertise)

Thank you!

Romain Lacombe | Stanford AI+Biomedicine May 2025

Romain Lacombe <rlacombe@stanford.edu> Stanford Chemical Engineering

